亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務(wù)咨詢熱線:

13395745986

當(dāng)前位置:首頁  >  技術(shù)文章  >  應(yīng)用案例 | 基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)

應(yīng)用案例 | 基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)

更新日期:2023-08-30      點擊次數(shù):1976

近日,來自安徽大學(xué)的周勝副教授團隊發(fā)表了《基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業(yè)生產(chǎn)和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產(chǎn)生重要影響。因此,甲烷的測量對環(huán)境監(jiān)測、生物醫(yī)藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導(dǎo)體氣體傳感器和電化學(xué)設(shè)備。半導(dǎo)體氣體傳感器在適當(dāng)?shù)牟僮鳝h(huán)境下具有ppm級別的靈敏度。激光吸收光譜技術(shù)具有高選擇性、高靈敏度、快速和多成分監(jiān)測等優(yōu)勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術(shù)可以準(zhǔn)確測量氣體分子的特征吸收線,并基于可調(diào)諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業(yè)過程到環(huán)境變化的各種現(xiàn)象的理解和監(jiān)測至關(guān)重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數(shù)和“空氣展寬"參數(shù)。光譜線參數(shù)是壓力和溫度的函數(shù)。濃度測量的準(zhǔn)確性取決于壓力穩(wěn)定性和光譜擬合精度。對于定量光譜分析,傳統(tǒng)上通過準(zhǔn)確的模型對光譜進行擬合,同時壓力和溫度必須定期校準(zhǔn),尤其是在相對大的環(huán)境波動情況下。因此,為實現(xiàn)所需的準(zhǔn)確性,系統(tǒng)的復(fù)雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發(fā)展為解決這個問題提供了一種新途徑。人工神經(jīng)網(wǎng)絡(luò)已被用于氣體識別,并在足夠訓(xùn)練數(shù)據(jù)的條件下表現(xiàn)出良好性能。基于Hopfield自聯(lián)想記憶算法的神經(jīng)網(wǎng)絡(luò)已用于識別五種類似的醇的紅外光譜。反向傳播神經(jīng)網(wǎng)絡(luò)用于從混合氣體中識別目標(biāo)氣體,證明了卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型可以有效提高識別準(zhǔn)確性。此外,最近的研究表明深度神經(jīng)網(wǎng)絡(luò)也可以應(yīng)用于振動光譜分析。卷積神經(jīng)網(wǎng)絡(luò)和自編碼器網(wǎng)絡(luò)被用于處理一維振動光譜數(shù)據(jù)。與傳統(tǒng)氣體檢測技術(shù)相比,輔以深度學(xué)習(xí)的氣體傳感器可以實現(xiàn)準(zhǔn)確的靈敏度測量,并降低異常檢測的魯棒性。深度神經(jīng)網(wǎng)絡(luò)(DNN)可以在經(jīng)過足夠樣本訓(xùn)練后直接從吸收光譜中學(xué)習(xí)特征,實現(xiàn)不需要壓力校準(zhǔn)和輪廓擬合的氣體濃度直接識別。這種網(wǎng)絡(luò)為檢索氣體濃度提供了一種新途徑,無需昂貴且復(fù)雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構(gòu)建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統(tǒng)。預(yù)測的濃度與校準(zhǔn)值相當(dāng)吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環(huán)境監(jiān)測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內(nèi)進行調(diào)諧寧波海爾欣光電科技有限公司為此項目提供激光驅(qū)動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數(shù)據(jù)庫獲取的光譜線參數(shù)進行了模擬。DFB激光二極管經(jīng)過纖維準(zhǔn)直器進行準(zhǔn)直,然后由一塊CaF2分束器進行對準(zhǔn),分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內(nèi)的壓力由壓力控制器、流量控制器和隔膜泵協(xié)同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅(qū)動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數(shù)據(jù)采集單元卡獲取。信號隨后傳輸?shù)接嬎銠C,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結(jié)論

總體而言,本項目開發(fā)了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設(shè)計了基于DFB激光二極管的甲烷檢測傳感器系統(tǒng)。此外,通過計算RMSE和訓(xùn)練時間評估了DNN算法的性能,并優(yōu)化了DNN層、神經(jīng)元數(shù)量和epochs等參數(shù),以獲取最佳參數(shù)。提出了改進的系統(tǒng)來分析和預(yù)測氣體吸收光譜數(shù)據(jù),在甲烷濃度預(yù)測方面表現(xiàn)出良好的準(zhǔn)確性和穩(wěn)定性。不同濃度的甲烷預(yù)測值與相應(yīng)的理論值線性擬合,證明其在實際領(lǐng)域應(yīng)用中具有巨大潛力,尤其適用于惡劣環(huán)境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統(tǒng)一服務(wù)電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
韩日视频一区| 欧美精品一区二区三区久久久竹菊 | 黄色亚洲大片免费在线观看| 欧美一区二区三区日韩视频| 国产精品一区视频| 欧美国产精品中文字幕| 亚洲精品一区二区三区99| 欧美久久久久| 久久这里有精品视频| 亚洲国产精品成人综合| 欧美激情视频在线播放| aa级大片欧美三级| 亚洲第一视频网站| 欧美日韩久久久久久| 久久亚洲春色中文字幕久久久 | 欧美激情一区二区三区在线视频观看| 亚洲国产一二三| 国产在线拍揄自揄视频不卡99| 毛片av中文字幕一区二区| 亚洲免费av网站| 在线播放中文一区| 欧美日韩aaaaa| 蜜桃伊人久久| 在线中文字幕日韩| 国产亚洲欧美一区| 国产精品视频区| 美国十次成人| 久久久久国产精品麻豆ai换脸| 亚洲精品123区| 国产精品网站在线观看| 国产精品爱啪在线线免费观看| 久久精品国产免费| 日韩亚洲精品电影| 亚洲日本精品国产第一区| 国产精品白丝av嫩草影院| 欧美日韩一区在线视频| 久久精品国产一区二区三区免费看| 亚洲欧洲日韩综合二区| 在线免费日韩片| 国产精品视频99| 国产精品高清网站| 男女激情久久| 免费av成人在线| 午夜欧美不卡精品aaaaa| 91久久午夜| 亚洲日本成人女熟在线观看| 国产欧美在线观看| 国产日产欧产精品推荐色| 欧美精品免费播放| 欧美日韩精品在线播放| 久久久久久尹人网香蕉| 久久久久久成人| 亚洲一区二区伦理| 亚洲国产婷婷| 亚洲精品视频在线观看网站| 国产午夜久久久久| 激情懂色av一区av二区av| 国产精品久久久久一区二区三区| 国产精品美女黄网| 欧美伦理一区二区| 国产精品久久久久国产a级| 欧美刺激午夜性久久久久久久| 欧美第一黄色网| 久久久久久久久久久久久久一区 | 亚洲激情网站免费观看| 国产精品专区第二| 国内精品久久久| 国产精品毛片一区二区三区| 国产日韩欧美视频在线| 欧美三区在线观看| 国产精品网站在线| 欧美日韩一区综合| 国产精品一区二区久激情瑜伽| 欧美日韩大陆在线| 国产精品区一区二区三| 欧美日韩国产色站一区二区三区| 国产精品成人一区| 欧美日韩色一区| 国产乱码精品一区二区三区忘忧草| 欧美日韩在线免费| 国产丝袜美腿一区二区三区| 国产精品久久久99| 好吊日精品视频| 国内外成人免费激情在线视频网站 | 极品裸体白嫩激情啪啪国产精品| 国产女人18毛片水18精品| 一区在线免费观看| 狠狠色丁香婷婷综合| 日韩视频专区| 亚洲美女网站| 欧美在线观看视频在线| 美女视频黄免费的久久| 久久久久国色av免费观看性色| 欧美激情bt| 欧美激情麻豆| 国产精品一区三区| 国产精品久久久久久久电影| 国内精品久久久久影院优| 国产亚洲福利一区| 亚洲精品视频啊美女在线直播| 亚洲精品久久久久久久久久久久 | 欧美日韩国产精品一卡| 欧美精品在线看| 国产精品日韩高清| 国产精品人人爽人人做我的可爱| 影音先锋久久久| 在线观看日韩精品| 亚洲一区二区伦理| 麻豆成人综合网| 欧美大片在线看| 国产伦精品一区| 国产一区二区三区奇米久涩| 亚洲人成啪啪网站| 亚洲精品无人区| 欧美一区中文字幕| 欧美久久视频| 欧美日韩中文字幕日韩欧美| 国产一区二区黄| 在线免费一区三区| 亚洲欧美卡通另类91av| 欧美www在线| 欧美日韩aaaaa| 在线欧美影院| 亚洲精品系列| 久久一区二区三区四区| 国产精品视频网站| 激情一区二区三区| 亚洲欧美一区二区精品久久久| 欧美黄色免费| 国产精品福利影院| 亚洲美女黄色| 免费成人激情视频| 欧美日韩国产页| 在线电影欧美日韩一区二区私密| 91久久极品少妇xxxxⅹ软件| 久久久久久黄| 国产日韩精品综合网站| 伊人精品久久久久7777| 欧美一区二区三区四区高清 | 夜夜狂射影院欧美极品| 久久综合国产精品| 欧美日韩成人在线| 亚洲电影在线观看| 一区二区久久久久| 欧美精品在线极品| 亚洲国产精品电影| 久久美女性网| 欧美日韩国产成人精品| 亚洲国产成人av好男人在线观看| 日韩午夜三级在线| 欧美国产激情二区三区| 伊人成人在线| 久久久久88色偷偷免费| 欧美日韩不卡视频| 亚洲精品国产精品乱码不99按摩| 另类av一区二区| 欧美午夜精品久久久久久超碰| 亚洲美女毛片| 欧美日产在线观看| 国产亚洲精品久久久久婷婷瑜伽| 亚洲图片自拍偷拍| 欧美视频在线不卡| 激情欧美一区二区| 久久久久青草大香线综合精品| 国产无一区二区| 日韩视频在线免费观看| 欧美巨乳在线观看| 亚洲品质自拍| 欧美精品色综合| 国产亚洲一二三区| 欧美一区二区高清在线观看| 国产美女精品免费电影| 最新精品在线| 欧美欧美天天天天操| 一本色道久久88综合亚洲精品ⅰ | 黄色资源网久久资源365| 久久精品2019中文字幕| 国产亚洲欧美日韩美女| 日韩一级在线观看| 欧美日韩国产探花| 亚洲无玛一区| 国产精品视频第一区| 亚洲精品一二三| 国产精品xnxxcom| 亚洲一卡久久| 国产欧美日韩视频| 久久久午夜精品| 国产精品三级视频| 欧美与黑人午夜性猛交久久久| 国产婷婷色一区二区三区在线| 久久久国产精品亚洲一区 | 欧美极品在线播放| 日韩一区二区免费高清| 欧美日韩一区在线播放| 亚洲人成在线观看网站高清| 欧美日产国产成人免费图片| 亚洲一区视频在线| 国产亚洲一区二区三区在线观看 | 久久久97精品| 亚洲国产一成人久久精品|