亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

應用案例 | 基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術

更新日期:2023-08-30      點擊次數:1964

近日,來自安徽大學的周勝副教授團隊發表了《基于深度神經網絡的無需壓力校準和輪廓擬合的氣體傳感光譜技術》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業生產和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產生重要影響。因此,甲烷的測量對環境監測、生物醫藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導體氣體傳感器和電化學設備。半導體氣體傳感器在適當的操作環境下具有ppm級別的靈敏度。激光吸收光譜技術具有高選擇性、高靈敏度、快速和多成分監測等優勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術可以準確測量氣體分子的特征吸收線,并基于可調諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業過程到環境變化的各種現象的理解和監測至關重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數和“空氣展寬"參數。光譜線參數是壓力和溫度的函數。濃度測量的準確性取決于壓力穩定性和光譜擬合精度。對于定量光譜分析,傳統上通過準確的模型對光譜進行擬合,同時壓力和溫度必須定期校準,尤其是在相對大的環境波動情況下。因此,為實現所需的準確性,系統的復雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發展為解決這個問題提供了一種新途徑。人工神經網絡已被用于氣體識別,并在足夠訓練數據的條件下表現出良好性能。基于Hopfield自聯想記憶算法的神經網絡已用于識別五種類似的醇的紅外光譜。反向傳播神經網絡用于從混合氣體中識別目標氣體,證明了卷積神經網絡(CNN)模型可以有效提高識別準確性。此外,最近的研究表明深度神經網絡也可以應用于振動光譜分析。卷積神經網絡和自編碼器網絡被用于處理一維振動光譜數據。與傳統氣體檢測技術相比,輔以深度學習的氣體傳感器可以實現準確的靈敏度測量,并降低異常檢測的魯棒性。深度神經網絡(DNN)可以在經過足夠樣本訓練后直接從吸收光譜中學習特征,實現不需要壓力校準和輪廓擬合的氣體濃度直接識別。這種網絡為檢索氣體濃度提供了一種新途徑,無需昂貴且復雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統。預測的濃度與校準值相當吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環境監測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內進行調諧寧波海爾欣光電科技有限公司為此項目提供激光驅動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數據庫獲取的光譜線參數進行了模擬。DFB激光二極管經過纖維準直器進行準直,然后由一塊CaF2分束器進行對準,分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內的壓力由壓力控制器、流量控制器和隔膜泵協同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數據采集單元卡獲取。信號隨后傳輸到計算機,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結論

總體而言,本項目開發了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設計了基于DFB激光二極管的甲烷檢測傳感器系統。此外,通過計算RMSE和訓練時間評估了DNN算法的性能,并優化了DNN層、神經元數量和epochs等參數,以獲取最佳參數。提出了改進的系統來分析和預測氣體吸收光譜數據,在甲烷濃度預測方面表現出良好的準確性和穩定性。不同濃度的甲烷預測值與相應的理論值線性擬合,證明其在實際領域應用中具有巨大潛力,尤其適用于惡劣環境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
一区二区欧美激情| 亚洲裸体俱乐部裸体舞表演av| 在线一区免费观看| 国产精品女主播在线观看| 欧美国产成人精品| 中文久久精品| 国产一区二区三区黄视频| 国产精品久久一区二区三区| 久久精品人人做人人爽| 91久久精品www人人做人人爽| 国产亚洲欧洲997久久综合| 免费视频一区| 久久久久88色偷偷免费| 亚洲毛片av| 国产日韩在线一区| 国产欧美在线观看| 欧美福利视频在线| 女女同性精品视频| 亚洲综合色丁香婷婷六月图片| 韩国精品一区二区三区| 国产一区二区视频在线观看| 欧美—级a级欧美特级ar全黄| 久久影音先锋| 亚洲一级二级| 亚洲国产精品激情在线观看| 在线成人国产| 国产久一道中文一区| 国产精品女人网站| 美女视频一区免费观看| 老司机aⅴ在线精品导航| 亚洲一卡二卡三卡四卡五卡| 亚洲福利免费| 亚洲精品久久久久| 国产亚洲毛片| 韩日欧美一区二区三区| 欧美午夜大胆人体| 欧美午夜一区二区| 欧美88av| 欧美日韩你懂的| 欧美成人免费在线| 欧美精品免费播放| 久久夜色撩人精品| 欧美大片国产精品| 久久九九久精品国产免费直播| 久久久精品午夜少妇| 亚洲免费影视| aⅴ色国产欧美| 亚洲欧美国产精品va在线观看| 亚洲精品国产精品乱码不99按摩| 亚洲精品美女在线| 在线精品国产欧美| 亚洲精品一区在线观看香蕉| 激情久久婷婷| 亚洲黄页一区| 在线观看欧美成人| 亚洲美女精品久久| 91久久精品一区| 99视频有精品| 亚洲理论在线| 亚洲免费网址| 久久网站免费| 久久精品理论片| 欧美国产日韩在线| 欧美11—12娇小xxxx| 欧美视频手机在线| 欧美精品日韩综合在线| 国产精品久久久久永久免费观看| 欧美日韩在线播放三区四区| 国产精品一区二区三区久久| 欧美色中文字幕| 国产亚洲制服色| 国产亚洲一区在线播放| 亚洲激情欧美| 亚洲黄色尤物视频| 亚洲视频高清| 久久久久一区| 久久人人爽人人爽| 欧美日韩亚洲综合一区| 欧美日韩国产精品专区| 国产亚洲福利社区一区| 国产日韩av在线播放| 亚洲三级毛片| 夜夜嗨av色综合久久久综合网| 午夜亚洲性色福利视频| 欧美成人精品福利| 欧美精品一区二区三区在线看午夜| 国产精品入口日韩视频大尺度| 国产精品久久久久aaaa九色| 精品999日本| 亚洲福利视频一区二区| 性刺激综合网| 欧美精品亚洲| 国产精品成人一区二区三区夜夜夜| 在线成人小视频| 亚洲国产第一| 欧美一区二区三区视频| 欧美日韩伦理在线| 国产精品嫩草99a| 99在线热播精品免费99热| 久久婷婷蜜乳一本欲蜜臀| 久久亚洲国产精品一区二区| 欧美午夜在线| 国产一级一区二区| 国产精品99久久久久久www| 美日韩精品视频免费看| 欧美连裤袜在线视频| 在线观看视频欧美| 亚洲免费观看高清完整版在线观看熊| 久久都是精品| 国产精品久久二区| 国内精品亚洲| 午夜精品偷拍| 欧美午夜电影一区| 国产日韩欧美综合精品| 99视频在线观看一区三区| 麻豆精品传媒视频| 欧美日韩一区二区三区在线看 | 亚洲韩日在线| 久久精品国产亚洲5555| 国产精品久久久久99| 国产自产2019最新不卡| 亚洲欧美日韩国产综合精品二区| 欧美精品成人在线| 国产精品一区久久| 亚洲一区网站| 欧美婷婷六月丁香综合色| 国产综合色产在线精品| 小处雏高清一区二区三区| 欧美四级电影网站| 激情欧美丁香| 久久久精品一区| 国产亚洲欧美日韩日本| 亚洲精品看片| 欧美精品久久99| 亚洲欧洲在线一区| 免费日韩一区二区| 国产精品免费电影| 亚洲线精品一区二区三区八戒| 欧美精品一区二区在线播放| 国产日韩欧美成人| 欧美中文字幕在线观看| 国产乱肥老妇国产一区二| 亚洲黄色在线| 欧美激情视频一区二区三区不卡| 亚洲二区在线视频| 玖玖国产精品视频| 国产精品一二三四| 欧美一区二区三区免费视频| 国产日韩欧美麻豆| 一本久久综合亚洲鲁鲁| 欧美日韩一区二区在线观看| 一本一本久久a久久精品牛牛影视| 欧美激情免费在线| 狠狠综合久久av一区二区小说| 久久精品女人天堂| 1000部国产精品成人观看| 免费日韩成人| 国内自拍亚洲| 免费观看成人鲁鲁鲁鲁鲁视频| 亚洲国产精品国自产拍av秋霞 | 午夜视频在线观看一区| 国产精品中文字幕欧美| 一区二区三区日韩欧美| 欧美日韩在线一二三| 亚洲欧美激情四射在线日| 国产精品你懂的在线欣赏| 亚洲每日更新| 国产精品国产三级国产专播精品人| 亚洲视频在线观看免费| 国产精品一区免费在线观看| 夜夜嗨av一区二区三区四区| 国产精品超碰97尤物18| 欧美一二三区在线观看| 黑丝一区二区三区| 欧美xart系列高清| 在线观看亚洲精品视频| 欧美激情 亚洲a∨综合| 制服诱惑一区二区| 国产午夜一区二区三区| 久久久夜夜夜| 国产一区二区三区最好精华液| 久久综合九色欧美综合狠狠| 亚洲人成在线观看网站高清| 欧美性大战xxxxx久久久| 99热这里只有精品8| 国产欧美精品日韩精品| 免播放器亚洲| 亚洲午夜久久久久久久久电影网| 国产欧美精品| 你懂的亚洲视频| 亚洲国产精品黑人久久久| 欧美三级视频| 久久久xxx| 一级成人国产| 国产真实乱偷精品视频免| 欧美国产视频一区二区| 亚洲欧洲在线播放| 国产欧美日韩在线| 欧美激情第一页xxx| 欧美亚洲日本一区|