亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 吸收光譜優化基于深度學習網絡的自適應Savitzky Golay濾波算法

應用案例 | 吸收光譜優化基于深度學習網絡的自適應Savitzky Golay濾波算法

更新日期:2023-12-25      點擊次數:1686

Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.

近日,來自安徽大學、山東師范大學聯合研究團隊發表了一篇題為Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究論文。

 

 

研究背景 Research Background

Nitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.

氮氧化物(NO2)是大氣中的主要污染物,源自自然光照、排放和工業排放。長時間暴露于NO2與呼吸問題的風險增加有關。NO2在大氣中產生的二次污染物可能導致光化學煙霧和酸雨。激光光譜學,如吸收光譜、熒光光譜和拉曼光譜,在物理學、化學、生物學和材料科學中發揮著日益重要的作用。它為追蹤具有靈敏度、選擇性和快速響應的氣體分析提供了強大的平臺。激光吸收光譜已被用于NO2的定量分析。然而,測得的氣體吸收光譜數據通常受到各種噪聲的污染,如隨機和相干噪聲,這可能扭曲有效吸收光譜并影響檢測靈敏度。

 

The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.

最近,Savitzky-GolayS-G)濾波算法因其參數較少、操作速度較快且保留了光譜的高度和形狀而受到關注。此外,可以在一個簡單的步驟中計算導數和平滑的光譜。RivoloNagel開發了一種自適應S-G平滑算法,逐點選擇最佳濾波參數。通過簡單的多變量閾值方法,S-G濾波器可以去除連續葡萄糖監測(CGM)信號中的所有類型噪聲,并進一步用于檢測低血糖/高血糖事件。S-G平滑濾波器廣泛用于平滑傅立葉變換紅外光譜的光譜,可消除隨機地震噪聲、遙感圖像融合和脈動波的處理。

 

The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance.

S–G 平滑濾波器的性能取決于多項式階數和窗口大小的適當折中。然而,在實際應用中,噪聲源和吸收光譜是未知的。在固定的窗口大小和多項式階數下獲得最佳的濾波效果是困難的。為解決這個問題,我們提出了一種優化的自適應S-G算法,將深度學習(DL)網絡與傳統的S-G濾波結合起來,以提高測量系統的性能。

 

實驗設置Experimental setup

Fig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube™, HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.

1展示了實驗設置,包括光源、帶有氣體壓力控制器的多通道吸收池、一系列鏡子、探測器和計算機。

Fig. 1(1).png

 

Fig. 1. Experimental device diagram.

 

 

寧波海爾欣光電科技有限公司為此項目提供了量子級聯激光器(型號:QC-Qube™ 全功能迷你量子級聯激光發射頭)。激光器由溫度控制器控制,最大峰值輸出功率為30 mW,由電流控制器控制,工作在~6.2 mm,通過鈣氟化物(CaF2)鏡子的輻射與追蹤激光(可見紅光,波長632.8 nm)共線,使用氧化鋅硒(ZnSe)分束器。光束進入具有2 m有效光程的多通道池,通過流量控制器和氣體池入口和出口的隔膜泵控制池中的壓力。典型頻率為100 Hz的三角波用作掃描信號。在296 K的溫度下,波數從1630.1調至1630.42 cm-1。使用熱電冷卻的汞鎘鎵探測器進行信號檢測,該探測器使用75 mm焦距的平凸透鏡。DAQ卡探測器放置在探測器旁邊,將數據傳輸到計算機,數據由LabVIEW程序進行實時分析。

QC-Qube™.jpg

 

QC-Qube™, HealthyPhoton Co., Ltd.

 

Fig.2(1).png

 

Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.

Fig.3(1).png

 

Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.

 

結論Conclusion

An improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.

在這項研究中,我們開發了一種改進的Savitzky-GolayS-G)濾波算法,用于去噪氮氧化物(NO2)的吸收光譜。我們引入了深度學習(DL)網絡到傳統的S-G濾波算法中,以實時調整窗口大小和多項式階數。DL網絡的自適應和跟蹤反饋能夠有效解決數字信號處理中選擇輸入濾波器參數的盲目性。我們將優化后的自適應S-G濾波算法與多信號平均濾波(MAF)算法進行比較,以展示其性能。優化后的S-G濾波算法被用于檢測氮氧化物在基于中量子級聯激光器(QCL)的氣體傳感器系統中的應用。實驗結果表明,該算法獲得了5倍的靈敏度增強,表明新開發的算法可以生成高質量的氣體吸收光譜,適用于大氣環境監測和呼吸氣檢測等應用。

 

 

reference參考來源:

Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187


全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
亚洲精品乱码久久久久久日本蜜臀| 国产日韩一区二区三区在线| 亚洲国产合集| 欧美国产一区二区三区激情无套| 亚洲人成在线播放网站岛国| 国产一区白浆| 欧美va亚洲va香蕉在线| 一区二区日韩精品| 亚洲日本乱码在线观看| 国产精品www| 欧美日韩mp4| 亚洲欧美日韩一区在线| 在线免费观看日韩欧美| 韩国三级电影久久久久久| 欧美激情按摩在线| 麻豆精品传媒视频| 亚洲一区二区在线观看视频| 精品成人国产| 狠狠操狠狠色综合网| 欧美精品在线播放| 欧美顶级艳妇交换群宴| 亚洲自拍电影| 亚洲国产精品成人一区二区 | 久久久夜精品| 日韩网站在线看片你懂的| 亚洲欧洲一区二区在线播放| 国产精品免费小视频| 国产精品啊v在线| 久久综合伊人77777尤物| 久久久久久久久久久成人| 一二三区精品| 在线观看日韩精品| 在线不卡亚洲| 国产免费成人av| 国产欧美日韩专区发布| 欧美精品亚洲| 欧美日韩亚洲不卡| 另类天堂av| 欧美成年人网| 久久精彩视频| 美女黄毛**国产精品啪啪 | 久久综合色婷婷| 久久久99免费视频| 亚洲尤物精选| 亚洲精品护士| 99视频一区二区| 亚洲国产国产亚洲一二三| 亚洲人www| 亚洲第一在线综合网站| 亚洲国产精品一区在线观看不卡 | 日韩午夜一区| 亚洲私人影院| 亚洲精品字幕| 亚洲深夜激情| 亚洲免费精品| 亚洲欧美日韩在线不卡| 在线性视频日韩欧美| 亚洲欧美日韩天堂| 久久免费视频在线| 欧美亚洲一级片| 久久人人爽人人爽| 欧美一区二区视频在线| 久久亚洲综合| 久久久亚洲午夜电影| 欧美精品麻豆| 欧美jizzhd精品欧美喷水| 欧美日韩在线播放| 欧美日韩国产999| 国产伦精品一区二区三区视频孕妇 | 欧美sm重口味系列视频在线观看| 欧美精品系列| 欧美精品久久99| 国产精品揄拍500视频| 国产精品嫩草99a| 伊人精品成人久久综合软件| 国产一区二区三区丝袜| 亚洲欧洲精品一区| 亚洲黄色成人| 亚洲欧美成人精品| 女女同性女同一区二区三区91| 久久久久九九九| 欧美三级电影大全| 国产精品国产三级国产专播品爱网| 狠狠色2019综合网| 伊人春色精品| 亚洲免费在线播放| 另类人畜视频在线| 欧美搞黄网站| 国产日韩一区在线| 国产在线精品二区| 日韩视频在线观看| 久久久91精品国产| 麻豆精品一区二区综合av| 国产精品久久久久久久久久免费| 国产精品一区二区三区久久| 亚洲欧洲精品成人久久奇米网| 亚洲欧洲在线观看| 欧美影院成人| 裸体歌舞表演一区二区| 影音先锋久久精品| 狠狠狠色丁香婷婷综合久久五月| 99riav国产精品| 久久色在线播放| 你懂的视频欧美| 国产麻豆视频精品| 国产一区二区三区在线观看精品 | 另类国产ts人妖高潮视频| 蜜臀av在线播放一区二区三区| 国产精品电影网站| 国产精品一级久久久| 亚洲免费成人av电影| 久久久久国产成人精品亚洲午夜| 久久综合免费视频影院| 国产欧美日韩激情| 在线观看欧美日韩国产| 亚洲欧美在线免费观看| 欧美黄色成人网| 国产精品久久久久久户外露出| 亚洲欧洲中文日韩久久av乱码| 一本在线高清不卡dvd| 欧美/亚洲一区| 国产在线精品自拍| 亚洲精品一级| 欧美成人午夜77777| 国产性做久久久久久| **性色生活片久久毛片| 久久国内精品视频| 国产欧美日韩免费| 最近看过的日韩成人| 一区二区亚洲精品国产| 一区二区三区欧美视频| 欧美日韩亚洲精品内裤| 国产午夜精品美女毛片视频| 久久久亚洲欧洲日产国码αv| 国产精品视频自拍| 国产精品99久久久久久白浆小说| 久久亚洲不卡| 欧美日韩国产电影| 亚洲日本成人| 美国成人直播| 国产精品一区毛片| 亚洲一区二区三区免费在线观看| 欧美另类videos死尸| 国产综合网站| 欧美在线视频播放| 国产亚洲va综合人人澡精品| 日韩手机在线导航| 久久久青草青青国产亚洲免观| 国产日产欧产精品推荐色 | 国产一区二区中文| 日韩一级二级三级| 欧美日韩激情网| 在线一区二区三区四区| 欧美日韩妖精视频| 尤物精品在线| 免费影视亚洲| 亚洲国产三级| 欧美精品在线免费观看| 激情久久影院| 欧美91大片| 欧美日韩成人| 国产主播一区二区三区| 午夜一区二区三视频在线观看| 国产麻豆日韩欧美久久| 一区二区三区日韩欧美精品| 国产精品国产三级国产专播品爱网| 亚洲一区在线免费观看| 国产一区二区三区四区老人| 久久久噜噜噜久久人人看| 日韩一级黄色大片| 亚洲精品永久免费| 欧美三级乱码| 亚洲综合色视频| 国产婷婷成人久久av免费高清| 久久久久久**毛片大全| 国产精品红桃| 久久精彩免费视频| 亚洲国产日韩欧美综合久久| 久久久精品免费视频| 伊人狠狠色j香婷婷综合| 久久综合色一综合色88| 国产亚洲福利社区一区| 美女在线一区二区| 日韩五码在线| 国产精品一区二区久久久 | 最新国产精品拍自在线播放| 欧美日韩直播| 一区二区精品国产| 国产亚洲午夜| 欧美电影免费| 亚洲一区免费看| 伊人精品久久久久7777| 欧美日韩另类丝袜其他| 99riav1国产精品视频| 国产欧美一区在线| 欧美高清在线一区二区| 亚洲欧美日韩精品久久亚洲区| 揄拍成人国产精品视频| 欧美视频官网| 久久裸体艺术|