亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 吸收光譜優(yōu)化基于深度學習網絡的自適應Savitzky Golay濾波算法

應用案例 | 吸收光譜優(yōu)化基于深度學習網絡的自適應Savitzky Golay濾波算法

更新日期:2023-12-25      點擊次數(shù):1718

Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.

近日,來自安徽大學、山東師范大學聯(lián)合研究團隊發(fā)表了一篇題為Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究論文。

 

 

研究背景 Research Background

Nitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.

氮氧化物(NO2)是大氣中的主要污染物,源自自然光照、排放和工業(yè)排放。長時間暴露于NO2與呼吸問題的風險增加有關。NO2在大氣中產生的二次污染物可能導致光化學煙霧和酸雨。激光光譜學,如吸收光譜、熒光光譜和拉曼光譜,在物理學、化學、生物學和材料科學中發(fā)揮著日益重要的作用。它為追蹤具有靈敏度、選擇性和快速響應的氣體分析提供了強大的平臺。激光吸收光譜已被用于NO2的定量分析。然而,測得的氣體吸收光譜數(shù)據通常受到各種噪聲的污染,如隨機和相干噪聲,這可能扭曲有效吸收光譜并影響檢測靈敏度。

 

The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.

最近,Savitzky-GolayS-G)濾波算法因其參數(shù)較少、操作速度較快且保留了光譜的高度和形狀而受到關注。此外,可以在一個簡單的步驟中計算導數(shù)和平滑的光譜。RivoloNagel開發(fā)了一種自適應S-G平滑算法,逐點選擇最佳濾波參數(shù)。通過簡單的多變量閾值方法,S-G濾波器可以去除連續(xù)葡萄糖監(jiān)測(CGM)信號中的所有類型噪聲,并進一步用于檢測低血糖/高血糖事件。S-G平滑濾波器廣泛用于平滑傅立葉變換紅外光譜的光譜,可消除隨機地震噪聲、遙感圖像融合和脈動波的處理。

 

The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance.

S–G 平滑濾波器的性能取決于多項式階數(shù)和窗口大小的適當折中。然而,在實際應用中,噪聲源和吸收光譜是未知的。在固定的窗口大小和多項式階數(shù)下獲得最佳的濾波效果是困難的。為解決這個問題,我們提出了一種優(yōu)化的自適應S-G算法,將深度學習(DL)網絡與傳統(tǒng)的S-G濾波結合起來,以提高測量系統(tǒng)的性能。

 

實驗設置Experimental setup

Fig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube™, HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.

1展示了實驗設置,包括光源、帶有氣體壓力控制器的多通道吸收池、一系列鏡子、探測器和計算機。

Fig. 1(1).png

 

Fig. 1. Experimental device diagram.

 

 

寧波海爾欣光電科技有限公司為此項目提供了量子級聯(lián)激光器(型號:QC-Qube™ 全功能迷你量子級聯(lián)激光發(fā)射頭)。激光器由溫度控制器控制,最大峰值輸出功率為30 mW,由電流控制器控制,工作在~6.2 mm,通過鈣氟化物(CaF2)鏡子的輻射與追蹤激光(可見紅光,波長632.8 nm)共線,使用氧化鋅硒(ZnSe)分束器。光束進入具有2 m有效光程的多通道池,通過流量控制器和氣體池入口和出口的隔膜泵控制池中的壓力。典型頻率為100 Hz的三角波用作掃描信號。在296 K的溫度下,波數(shù)從1630.1調至1630.42 cm-1。使用熱電冷卻的汞鎘鎵探測器進行信號檢測,該探測器使用75 mm焦距的平凸透鏡。DAQ卡探測器放置在探測器旁邊,將數(shù)據傳輸?shù)接嬎銠C,數(shù)據由LabVIEW程序進行實時分析。

QC-Qube™.jpg

 

QC-Qube™, HealthyPhoton Co., Ltd.

 

Fig.2(1).png

 

Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.

Fig.3(1).png

 

Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.

 

結論Conclusion

An improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.

在這項研究中,我們開發(fā)了一種改進的Savitzky-GolayS-G)濾波算法,用于去噪氮氧化物(NO2)的吸收光譜。我們引入了深度學習(DL)網絡到傳統(tǒng)的S-G濾波算法中,以實時調整窗口大小和多項式階數(shù)。DL網絡的自適應和跟蹤反饋能夠有效解決數(shù)字信號處理中選擇輸入濾波器參數(shù)的盲目性。我們將優(yōu)化后的自適應S-G濾波算法與多信號平均濾波(MAF)算法進行比較,以展示其性能。優(yōu)化后的S-G濾波算法被用于檢測氮氧化物在基于中量子級聯(lián)激光器(QCL)的氣體傳感器系統(tǒng)中的應用。實驗結果表明,該算法獲得了5倍的靈敏度增強,表明新開發(fā)的算法可以生成高質量的氣體吸收光譜,適用于大氣環(huán)境監(jiān)測和呼吸氣檢測等應用。

 

 

reference參考來源:

Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187


全國統(tǒng)一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
欧美专区亚洲专区| **欧美日韩vr在线| 亚洲国产一区二区精品专区| 久久全球大尺度高清视频| 激情丁香综合| 国产精品久久久久av免费| 亚洲欧美视频在线| 国产亚洲欧美中文| 欧美色另类天堂2015| 亚洲影音一区| 国产日韩欧美一区二区三区在线观看 | 亚洲欧美春色| 国产亚洲一区在线| 欧美天天视频| 久久av资源网| 最新成人av网站| 国产一区 二区 三区一级| 另类亚洲自拍| 在线视频免费在线观看一区二区| 亚洲国产精品久久久| 欧美三区免费完整视频在线观看| 美日韩丰满少妇在线观看| 99伊人成综合| 国产日韩欧美一区在线 | 国产在线拍揄自揄视频不卡99| 久久手机精品视频| 亚洲免费黄色| 亚洲国产精品va在线看黑人动漫 | 韩国自拍一区| 欧美精品一区二| 欧美成人dvd在线视频| 中国成人亚色综合网站| 国产一区二区三区直播精品电影| 国产精品国产三级国产aⅴ9色| 久久久久中文| 久久九九99视频| 99在线热播精品免费99热| 国产一区二区视频在线观看| 国产日韩欧美三级| 欧美激情影院| 欧美国产在线视频| 欧美一区二区三区在线观看| 亚洲欧洲一区二区在线播放| 亚洲成在线观看| 国产精品人成在线观看免费| 国产精品久久久久久久久久久久| 麻豆精品传媒视频| 美女免费视频一区| 亚洲欧美日产图| 亚洲精品极品| 亚洲精品五月天| 国内精品久久久久久久97牛牛| 国产综合av| 国产精品免费福利| 国产精品视频内| 欧美精品99| 欧美日韩一卡| 免费亚洲网站| 欧美精品乱码久久久久久按摩| 久久国产一二区| 久久女同精品一区二区| 亚洲综合首页| 日韩一区二区电影网| 一本色道久久综合亚洲精品高清| 亚洲二区精品| 亚洲另类在线视频| 亚洲成色999久久网站| 亚洲激情午夜| 黄色亚洲免费| 亚洲激情中文1区| 黄色国产精品| 亚洲国产日韩在线一区模特| 黑人操亚洲美女惩罚| 在线观看精品视频| 黄色工厂这里只有精品| 亚洲国产综合在线| 海角社区69精品视频| 亚洲高清影视| 在线不卡亚洲| 99视频有精品| 一本久道久久综合婷婷鲸鱼| 亚洲一区视频在线| 一区二区三区成人| 欧美在线资源| 欧美大片在线观看一区| 久久亚洲二区| 欧美日韩国产免费| 欧美精品二区| 国产精品午夜视频| 国产精品igao视频网网址不卡日韩| 国产欧美一区在线| 国产日本精品| 亚洲国产精品一区二区久| 韩国成人精品a∨在线观看| 亚洲精品国产精品久久清纯直播| 亚洲国产免费看| 亚洲一区二区在| 久久天天综合| 美乳少妇欧美精品| 国产精品久久久久7777婷婷| 国产精品久久久久9999吃药| 激情久久中文字幕| 影音欧美亚洲| 亚洲一区二区三区在线观看视频| 久久久久久久波多野高潮日日| 欧美一区二区在线观看| 欧美成人一区在线| 欧美精品午夜| 国产一区视频网站| 一区二区三区无毛| 亚洲专区在线| 欧美国产综合视频| 欧美日韩国产经典色站一区二区三区| 国产一区二区三区高清播放| 在线成人av| 亚洲影视九九影院在线观看| 欧美高清视频www夜色资源网| 欧美日韩高清在线| 一区二区三区在线观看欧美| 亚洲国产欧美日韩| 欧美一级视频精品观看| 欧美日韩精品在线播放| 国产精品麻豆成人av电影艾秋| 91久久精品美女高潮| 一本久久综合亚洲鲁鲁五月天| 久久综合色8888| 国产日韩欧美亚洲一区| 在线观看日韩av电影| 性欧美8khd高清极品| 欧美日韩国产免费观看| 国产精品午夜在线观看| 日韩一区二区精品视频| 另类酷文…触手系列精品集v1小说| 欧美福利网址| 一区精品在线| 一本色道久久| 欧美激情一区二区三区全黄 | 亚洲黄色片网站| 久久久久成人精品| 国产精品综合视频| 一区二区视频免费完整版观看| 午夜精品久久久久久久男人的天堂| 欧美日本不卡| 国产中文一区| 欧美影院精品一区| 国产精品入口尤物| 亚洲第一精品在线| 久久亚洲影院| 狠狠色丁香婷婷综合久久片| 亚洲伦理在线免费看| 欧美高清视频www夜色资源网| 影音先锋久久久| 久久露脸国产精品| 欧美视频免费在线观看| 一区二区av在线| 欧美日韩一区二区视频在线| 国产日韩av高清| 欧美一区二区性| 国产一区在线观看视频| 一本久道久久综合婷婷鲸鱼| 欧美日韩国产一区二区三区| 亚洲精品网站在线播放gif| 欧美高清视频一区二区| 国产日韩欧美91| 欧美一级艳片视频免费观看| 国产农村妇女精品一二区| 日韩亚洲不卡在线| 欧美日韩在线视频一区二区| 一区二区成人精品 | 国产精品欧美一区喷水| 亚洲一区二区三区精品在线| 国产精品v欧美精品∨日韩| ●精品国产综合乱码久久久久| 久久综合久久久| 亚洲国产成人在线视频| 欧美成人免费网站| 国产日韩欧美在线播放不卡| 久久精品一区二区三区四区| 狠狠色狠狠色综合日日小说| 久久欧美中文字幕| 国产欧美91| 久久精品中文字幕一区| 狠色狠色综合久久| 美女久久一区| 国产喷白浆一区二区三区 | 在线观看国产日韩| 老司机久久99久久精品播放免费| 亚洲第一网站| 欧美国产一区二区| 影音先锋另类| 欧美激情一区二区三区成人| 一区二区三区四区五区在线| 国产精品视频不卡| 一本色道久久综合亚洲精品不卡| 欧美色图天堂网| 欧美一区二区三区在线看 | 在线精品在线| 欧美精品成人| 午夜精品福利在线| 樱花yy私人影院亚洲|