亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體

應用案例 | T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體

更新日期:2023-07-19      點擊次數:1262
  T型光聲池的光聲光譜技術用于同時檢測基于三重共振模態的多組分氣體
 
  T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality
 
  近日,來自西安電子科技大學、哈爾濱工業大學可調諧(氣體)激光技術國家級重點實驗室的聯合研究團隊發表了《T型光聲池的光聲光譜技術用于基于三重共振模態的多組分氣體的同時檢測》論文。
 
  Recently, the joint research team from  School of Optoelectronic Engineering, Xidian University,  National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality.
 
  油浸式電力變壓器是現代電力分配和傳輸系統中最重要的絕緣設備之一。通過同時測量絕緣油中的溶解氣體,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在電力變壓器的過熱、電弧和局部放電故障的早期診斷中提供合適的解決方案。變壓器故障主要可分為過熱故障和放電故障。CO、CH4和C2H2的含量變化是變壓器故障的主要指標。過熱故障包括裸金屬過熱、固體絕緣過熱和低溫過熱。裸金屬過熱的特征是烴類氣體(如CH4和C2H2)濃度的上升。上述兩種氣體的總和占總烴類氣體的80%以上,其中CH4占較大比例(>30 ppm)。CO的濃度(>300 ppm)強烈指示固體絕緣過熱和變壓器故障中的低溫過熱。當變壓器處于放電故障時,C2H2會急劇增加(>5 ppm,占總烴類氣體的20%-70%)。因此,本研究選擇CO、CH4和C2H2作為目標分析物。傳統的多組分氣體定量檢測方法,如氣相色譜儀、半導體氣體傳感器和電化學傳感器,在實時監測、恢復時間、選擇性和交叉敏感性方面存在一定限制。基于光聲光譜技術的光學傳感器平臺具有高靈敏度、高選擇性、快速響應、長壽命和成熟的傳感器設備等優點,在多組分氣體傳感領域發揮著重要作用。已經開發出多種基于光聲光譜技術的多組分氣體傳感器模式,如傅里葉變換紅外光聲光譜模式、基于寬帶檢測的熱輻射體或黑體輻射體使用多個帶通濾波器、多激光器與時分復用(TDM)方法的結合,以及采用多共振器和頻率分割復用(FDM)方案。然而,由于寬帶光源的相對弱強度,弱光聲(PA)信號易受到背景噪聲的干擾,這是高靈敏度檢測的主要障礙。
 
  Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (>30 ppm). The concentration of CO (>300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (>5 ppm, 20%− 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection.
 
  由于吸收和共振圓柱體共同決定了其共振頻率,設計并驗證了一種T型光聲池作為適當的傳感器。通過引入激勵光束位置優化,從模擬和實驗中研究了三種指定的共振模式,呈現了可比較的振幅響應。使用QCL、ICL和DFB激光器作為激發光源,同時測量CO、CH4和C2H2,展示了多氣體檢測的能力。
 
  A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.
 
  圖片顯示了配備了T型光聲池的基于PAS的多組分氣體傳感器配置的示意圖。使用三個激發激光器作為激光源,包括DFB ICL(HealthyPhoton,型號HPQCL-Q)、DFB QCL(HealthyPhoton,型號QC-Qube)和NIR激光二極管(NEL),分別在2968 cm−1、2176.3 cm−1和6578.6 cm−1處發射,以實現對CH4、CO和C2H2的同時檢測。ICL、QCL和NIR激光二極管在目標吸收波長處的光功率分別為8 mW、44 mW和32 mW,通過熱功率計(Ophir Optronics 3 A)進行測量。所有激光源都通過調節電流和溫度控制來驅動。
 
  A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm−1, 2176.3 cm−1 and 6578.6 cm−1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.
 
圖片
  Fig.The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.
 
圖片
HealthyPhoton, model HPQCL-Q
 
圖片
HealthyPhoton, model QCQube
 
  結論
 
  建立了基于T型光聲池的多共振光聲光譜氣體傳感器,并驗證其能夠進行多組分同時檢測,達到ppb級別的靈敏度。通過有限元分析(FEA)模擬優化和實驗光束激發位置設計,三個指定的諧振頻率的光聲響應相互比較,確保了同時檢測多種微量氣體的高性能。選擇了CO、CH4和C2H2這三種可燃氣體作為目標氣體,使用QCL(4.59 µm,44 mW)、ICL(3.37 µm,8 mW)和NIR激光二極管(1.52 µm,32 mW)作為入射光束進行同時檢測驗證。F1模式下,光束照射到緩沖腔體壁上,信噪比(SNR)相比通過吸收圓柱體的情況提高了4.5倍。實驗得到了CO、CH4和C2H2的最小檢測限(1σ)分別為89ppb、80ppb和664ppb,對應的歸一化噪聲等效吸收系數(NNEA)分別為5.75 × 10−7 cm−1 W Hz−1/2、1.97 × 10−8 cm−1 W Hz−1/2和4.23 × 10−8 cm−1 W Hz−1/2。對濕度交叉敏感性進行改進的研究提供了對光聲光譜傳感器在濕度松弛相關效應方面的更好理解。利用單個光聲腔體和單個探測器進行多組分氣體傳感的這種開發的光聲光譜模式,具有在電力變壓器故障的早期診斷方面的獨特潛力。
 
  Conclusions
 
  A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µm, 44 mW), an ICL (3.37 µm, 8 mW) and a NIR laser diode (1.52 µm, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10−7 cm−1 W Hz−1/2, 1.97 × 10−8 cm−1 W Hz−1/2 and 4.23 × 10−8 cm−1 W Hz−1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.
 
圖片
  Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.
 
圖片
  Schematic structure of the developed T-type PAC.
 
圖片
  Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).
 
圖片
  Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam; (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.
 
圖片
  The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.
 
圖片
  The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement; (b) The PA amplitude vs. frequency of F1 for the two incident ways; (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways; (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.
 
圖片
  Schematic of the improved humidification system for humidity control.
 
  Reference
 
  Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.
 
  https://doi.org/10.1016/j.pacs.2023.100492
 

全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
在线看欧美日韩| 国产精品青草久久久久福利99| 国产精品推荐精品| 欧美精品一区二区三区在线播放| 亚洲精品美女91| 欧美亚洲成人精品| 欧美精品久久99| 亚洲尤物精选| 国模叶桐国产精品一区| 国产精品免费网站| 鲁大师影院一区二区三区| 亚洲开发第一视频在线播放| 在线观看欧美日韩| 欧美三级韩国三级日本三斤| 欧美电影在线免费观看网站| 亚洲一区二区三区视频播放| 国内外成人免费视频| 国产日韩欧美精品在线| 欧美大片免费久久精品三p| 日韩一级片网址| 亚洲精品视频免费| 国产欧美日韩精品丝袜高跟鞋| 欧美性猛交xxxx免费看久久久 | 国产精品mm| 欧美日韩黄视频| 久久精品最新地址| 日韩一区二区精品视频| 亚洲免费成人av| 国产欧美精品一区二区色综合 | 一本色道久久综合亚洲精品按摩| 久久精品久久99精品久久| 99pao成人国产永久免费视频| 国产精品第一区| 久久米奇亚洲| 日韩视频在线播放| 亚洲日韩欧美视频一区| 国产日韩欧美综合一区| 国产美女精品视频免费观看| 欧美国产日韩一区二区三区| 欧美大学生性色视频| 欧美一区二区三区四区在线观看地址 | 亚洲风情亚aⅴ在线发布| 精品动漫一区| 国产精品日韩精品欧美精品| 国产精品视频观看| 欧美日韩成人在线视频| 欧美日韩在线精品| 欧美顶级少妇做爰| 欧美日韩高清不卡| 欧美ed2k| 欧美日韩无遮挡| 欧美大香线蕉线伊人久久国产精品| 欧美不卡高清| 久久久久网站| 欧美电影打屁股sp| 久久夜色撩人精品| 欧美激情中文字幕一区二区| 久久琪琪电影院| 欧美激情精品久久久久久| 久久久99精品免费观看不卡| 美女任你摸久久| 久久久久99精品国产片| 欧美福利电影网| 久久综合五月| 欧美日韩久久不卡| 欧美日本乱大交xxxxx| 国产精品美女久久久久aⅴ国产馆| 欧美理论在线| 国产精品专区h在线观看| 国产精品igao视频网网址不卡日韩| 国产日韩欧美a| 国产美女一区二区| 亚洲国产成人一区| 在线国产精品播放| 一本久道久久综合婷婷鲸鱼| 亚洲精品久久久久| 亚洲欧美在线免费观看| 久久视频在线看| 久久精品成人| 欧美人牲a欧美精品| 欧美日韩成人| 国产小视频国产精品| 国产视频久久久久| 亚洲精品自在久久| 一本久久综合亚洲鲁鲁| 欧美在线影院在线视频| 欧美激情国产日韩精品一区18| 欧美—级在线免费片| 国产视频自拍一区| 狠狠狠色丁香婷婷综合久久五月| 亚洲精品影院| 久久久99精品免费观看不卡| 欧美中文字幕| 欧美日韩免费一区| 欧美午夜精品久久久久久久| 狠狠色丁香婷综合久久| 有码中文亚洲精品| 亚洲欧美一区二区激情| 欧美激情亚洲精品| 欧美日韩亚洲成人| 精品动漫3d一区二区三区免费版| 亚洲国产另类 国产精品国产免费| 亚洲综合欧美日韩| 欧美 日韩 国产 一区| 欧美韩国日本一区| 韩国三级在线一区| 亚洲观看高清完整版在线观看| 亚洲欧美日韩国产中文| 欧美激情第8页| 国产精品99一区二区| 亚洲区一区二区三区| 在线亚洲一区观看| 欧美二区在线| 影音先锋一区| 99在线|亚洲一区二区| 蜜桃久久精品乱码一区二区| 国产精品自在线| 亚洲第一福利在线观看| 欧美中文字幕在线观看| 国产精品久久久久高潮| 国产一区二区日韩| 亚洲综合色自拍一区| 欧美日韩在线直播| 国产一区亚洲一区| 亚洲欧美欧美一区二区三区| 欧美精品在线网站| 国产伦精品一区| 亚洲一区二区三区三| 欧美日韩p片| 国产婷婷97碰碰久久人人蜜臀| 在线亚洲电影| 欧美日韩三区| 禁断一区二区三区在线| 欧美在线关看| 国产精品专区h在线观看| 亚洲国产高清高潮精品美女| 久久精品一区二区国产| 国产日韩在线亚洲字幕中文| 91久久精品日日躁夜夜躁欧美 | 欧美高清在线一区| 亚洲风情亚aⅴ在线发布| 久久久久国产一区二区三区| 欧美日韩国产影院| 99精品视频一区二区三区| 欧美好骚综合网| 国产亚洲观看| 欧美专区中文字幕| 国产一级精品aaaaa看| 99热精品在线观看| 欧美日韩成人在线播放| 日韩一区二区精品| 欧美日韩免费高清一区色橹橹| 国内伊人久久久久久网站视频| 欧美中文字幕久久| 激情成人综合| 久久久中精品2020中文| 国产精品久久久久久影院8一贰佰| 一区二区三区高清在线观看| 欧美日韩日本视频| 亚洲福利专区| 欧美激情精品久久久久久免费印度 | 欧美成人精品一区| 亚洲日本成人在线观看| 欧美护士18xxxxhd| 一区二区三区在线视频免费观看 | av成人免费观看| 欧美视频在线观看一区| 亚洲一区亚洲| 国产精品综合不卡av| 久久久精品性| 国产精品日韩精品| 久久久久久综合网天天| 亚洲第一视频| 欧美日韩播放| 亚洲经典视频在线观看| 欧美日韩另类丝袜其他| 亚洲一二三区在线| 国产欧美日韩一区二区三区在线观看| 亚洲麻豆视频| 国产精品国产三级欧美二区 | 欧美大片91| 亚洲午夜视频| 国产亚洲精品久久久| 久久综合色一综合色88| 国产色婷婷国产综合在线理论片a| 久久久蜜桃一区二区人| 亚洲精品国产无天堂网2021| 欧美午夜不卡视频| 一区二区三区国产盗摄| 国产日韩欧美三区| 欧美成人自拍视频| 亚洲综合精品自拍| 在线欧美电影| 国产精品v日韩精品| a4yy欧美一区二区三区| 国产日韩欧美夫妻视频在线观看| 美女在线一区二区| 亚洲桃花岛网站| 精品成人a区在线观看| 欧美日韩另类综合|